Three-Dimensional Simulation of Turbulent Processes in an Undisturbed Trade Wind Boundary Layer

1976 ◽  
Vol 33 (2) ◽  
pp. 216-241 ◽  
Author(s):  
Gilles Sommeria
1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


Author(s):  
Xiaojing Fu ◽  
Luis Cueto-Felgueroso ◽  
Ruben Juanes

Geological carbon dioxide (CO 2 ) sequestration entails capturing and injecting CO 2 into deep saline aquifers for long-term storage. The injected CO 2 partially dissolves in groundwater to form a mixture that is denser than the initial groundwater. The local increase in density triggers a gravitational instability at the boundary layer that further develops into columnar plumes of CO 2 -rich brine, a process that greatly accelerates solubility trapping of the CO 2 . Here, we investigate the pattern-formation aspects of convective mixing during geological CO 2 sequestration by means of high-resolution three-dimensional simulation. We find that the CO 2 concentration field self-organizes as a cellular network structure in the diffusive boundary layer at the top boundary. By studying the statistics of the cellular network, we identify various regimes of finger coarsening over time, the existence of a non-equilibrium stationary state, and a universal scaling of three-dimensional convective mixing.


2008 ◽  
Vol 128 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Yoshitaka Inui ◽  
Tadashi Tanaka ◽  
Tomoyoshi Kanno

2009 ◽  
Vol 19 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Hong-Bing Xiong ◽  
Jian-Zhong Lin ◽  
Ze-Fei Zhu

Sign in / Sign up

Export Citation Format

Share Document